SVCET TECHZETTE fadisdY sraus

ISSN: 2584-0886 (Online)
Building a Simple Multi-Layer Perceptron (MLP): A
Step-by-Step Guide

Shalaka Kadam
. Introduction

In this tutorial, we will guide you through the process of building a simple Multi-Layer
Perceptron (MLP) from scratch using Python and TensorFlow. We’ll use the MNIST dataset
of handwritten digits to train and test our MLP, and every step will be accompanied by a
screenshot to make it easier for beginners to follow along. This article is perfect if you are
new to neural networks and want a hands-on introduction to building your first MLP model.

Let’s dive in!
. What is an MLP?

A Multi-Layer Perceptron (MLP) is a fundamental type of neural network that consists of
three main layers: an input layer, one or more hidden layers, and an output layer. The input
layer receives the data, the hidden layers process the data, and the output layer generates the
final prediction. An MLP "learns" by adjusting its weights and biases during the training

phase, allowing it to make more accurate predictions over time.
. Setting Up the Environment

To start building our MLP, we need to set up the development environment by installing a
few necessary libraries. Open your terminal and run the following command to install

TensorFlow, NumPy, and Matplotlib:

Figure : install libraries

Volume 3 — 2025
Article No. 10, PP 1-4 https://techz.vcet.edu.in/ g



VCET TECHZETTE faeftdet o=
ISSN: 2584-0886 (Online)

Bulldmg a Simple Multi-Layer Perceptron (MLP): A
Step-by-Step Guide

After installing the libraries, we can begin by importing them into our Python script. These
libraries will help us load the data, build the MLP model, and visualize the results. Here’s the

code to import them:

Figure : import libraries

. Building the MLP

The first step in building the MLP is to load and preprocess the data. We’ll be using the
MNIST dataset, which consists of 28x28 pixel images of handwritten digits ranging from 0 to
9. TensorFlow provides this dataset out-of-the-box, so loading it is simple. After loading the
data, we need to normalize the pixel values to be between 0 and 1. This makes the training
process smoother. We’ll also flatten each 28x28 image into a single vector of 784 pixels,

which will serve as input for our MLP model.

Figure : data being loaded, normalized, and flattened

With the data prepared, we can now define the architecture of the MLP model. We’ll use the
Sequential API provided by TensorFlow’s Keras module, which allows us to easily stack

layers. Our MLP will have an input layer, two hidden layers, and an output layer. The first

Volume 3 — 2025
Article No. 10, PP 1-4 https://techz.vcet.edu.in/ g



TECHZETTE fadigdt Iraux

ISSN: 2584-0886 (Online)
Bulldmg a Simple Multi-Layer Perceptron (MLP): A
Step-by-Step Guide

hidden layer will contain 128 neurons, and the second will have 64 neurons. Both of these
layers will use the ReLU activation function, which helps the model learn complex patterns.
The output layer will have 10 neurons, one for each possible digit (0-9), and will use the

softmax activation function to output probabilities for each class.

Figure : MLP model structure

. Training the MLP

Before we can train the MLP, we need to compile the model. Compiling involves specifying
the loss function, which helps the model understand how far its predictions are from the
actual labels. In this case, we’ll use sparse categorical crossentropy, which is commonly
used for classification problems where the labels are integers (like in our MNIST dataset). We
also define the optimizer, which is the algorithm that adjusts the model’s weights during
training to minimize the loss. We’ll use the popular Adam optimizer for this. Lastly, we’ll

track the accuracy metric to evaluate how well the model is performing.

Figure : Compile the model

Once the model is compiled, we can begin the training process. We’ll train the MLP using the
fit() method, which will allow the model to learn from the training data. We’ll train it for 5
epochs, meaning the model will see the entire dataset 5 times. We’ll also evaluate the model
on the test dataset after each epoch to see how well it generalizes to unseen data.

Volume 3 — 2025
Article No. 10, PP 1-4 https://techz.vcet.edu.in/ g



SVCET TECHZETTE fadisdY sraus

ISSN: 2584-0886 (Online)
Building a Simple Multi-Layer Perceptron (MLP): A
Step-by-Step Guide

Figure : Training the model

. Testing the MLP

Now that the model has been trained, it’s time to evaluate its performance on the test data. We
can use the evaluate() method to calculate the test accuracy, which will tell us how well the
MLP performs on data it has never seen before. A good test accuracy indicates that the model

has learned to generalize well beyond the training examples.

Figure : Evaluate the model

In this guide, we built a simple Multi-Layer Perceptron (MLP) using Python and TensorFlow,
covering everything from loading the MNIST dataset to training and testing the model. The
MLP is a basic yet powerful neural network. Now that you've completed this project, feel free
to experiment by adding layers, adjusting activation functions, or trying new datasets. Happy

coding!

Volume 3 — 2025
Article No. 10, PP 1-4 https://techz.vcet.edu.in/ g



