T TECHZETTE fqdtsdt Arau

ISSN: 2584-0886 (Online)
Neural Architecture Search (NAS): Automating

Deep Learning Model Design

Yash Biranje

In the field of deep learning, designing a model’s architecture is a critical yet time-consuming
process. Traditionally, researchers and engineers manually craft neural network architectures

through trial and error, expertise, and intuition.
What is Neural Architecture Search (NAS)?

Neural Architecture Search (NAS) is a subfield of AutoML (Automated Machine Learning)
that automates the process of designing neural network architectures. NAS algorithms aim to
find the best-performing architecture for a specific task by searching through a large space of
potential architectures. Instead of relying on human intuition or manual adjustments, NAS

uses optimization techniques to explore and evaluate architectures autonomously.
How Does NAS Work?
NAS consists of three key components:

Search Space: This defines the possible neural network architectures that NAS can explore.

It includes variations in layers, activation functions, connections, and other hyperparameters.

Search Strategy: The method used to explore the search space. This can be based on
techniques like reinforcement learning, evolutionary algorithms, or gradient-based
optimization. The search strategy aims to efficiently navigate the vast search space and

converge on architectures that offer high performance.

Performance Estimation Strategy: Evaluating the quality of each candidate architecture by
training it and measuring its performance. This estimation can be computationally expensive,

so techniques like weight sharing or early stopping are used to reduce the time required.

Search Strategies in NAS

Volume 3 — 2025
Article No. 20, PP 1-5 https://techz.vcet.edu.in/ g

(O]

\VCET TECHZETTE fad$dY siraus

ISSN: 2584-0886 (Online)

Reinforcement Learning (RL): NAS can be modeled as a reinforcement learning problem,

where an agent proposes architectures, trains them, and receives feedback based on
performance. The agent learns which architectural choices lead to better outcomes and

improves its design suggestions over time.

Evolutionary Algorithms: This strategy mimics natural selection by evolving a population
of neural architectures. The process involves mutation, crossover, and selection to gradually

improve the population's performance over successive generations.

Gradient-based Search: Gradient-based NAS approaches, such as Differentiable
Architecture Search (DARTS), convert the discrete search space into a continuous one. This
allows the architecture to be optimized using gradient descent, making the search more

efficient and scalable.

Mathematical Calculation Involved in NAS:

Search Space (S): The search space S represents all possible neural network architectures
that NAS can explore. Each architecture a € S can be defined by a set of discrete and
continuous variables (e.g., number of layers, type of layers, activation functions), forming a

highly complex and high-dimensional space.

Search Strategy (Optimization): Mathematically, the goal of NAS is to find the architecture
a*€ S that minimizes the loss function L(a , Dtrain) where Dtrain is the training dataset. This

can be written as:
ax= arg min a€S L(a, Dtrain)

This optimization problem is challenging due to the vast search space, so different methods
like reinforcement learning (RL), evolutionary algorithms, and gradient-based methods are

employed.

Reinforcement Learning (RL): In RL-based NAS, the controller (agent) selects architecture
actions sequentially, represented by a policy n(a)\pi(a)n(a). The reward R(a)R(a)R(a) is the
validation accuracy or performance of the architecture after training. The objective is to
maximize the expected reward over the search space:

Volume 3 — 2025
Article No. 20, PP 1-5 https://techz.vcet.edu.in/ g

SVCET TECHZETTE fad1sdY sraux

ISSN: 2584-0886 (Online)
Max ©t Ea~n[R(a)]

The RL controller is updated using gradients from the policy gradient theorem.

Differentiable Architecture Search (DARTS): In gradient-based NAS (DARTS), the discrete
search space is relaxed into a continuous one by parameterizing architectures using

continuous variables. The architecture search then becomes a bi-level optimization problem:
subject to:
Min a Lval(w*(a),0)

w+(o)=arg min wLtrain(w,a)

Here, a alphaa represents the architecture parameters, and www are the weights of the neural
network. The optimization alternates between updating a alphaa and www using gradient

descent.

Evolutionary Algorithms: Evolutionary NAS methods involve generating a population of
architectures and iteratively refining them. Mutation and crossover operations are applied to
architectures, and their fitness scores (performance on validation data) are calculated.

Mathematically, this is modeled as:
Pnew=mutate(cross(Pcurrent)) Pnext=select(PcurrentUPnew)

Where Pcurrent is the current population, and Pnext is the new population after selection

based on fitness.

Real-world Applications of NAS

Google’s AutoML: One of the most notable uses of NAS is in Google’s AutoML system,
which leverages NAS to automatically design high-performing neural networks. Google
AutoML has demonstrated that NAS-generated architectures can outperform state-of- the-art

manually designed models in tasks like image classification.

Volume 3 — 2025
Article No. 20, PP 1-5 https://techz.vcet.edu.in/ g

™

\VCET TECHZETTE fad$dY siraus

)
ISSN: 2584-0886 (Online)
EfficientNet: NAS was used to discover the EfficientNet architecture, a family of models

that achieve state-of-the-art accuracy on image classification tasks while being
computationally efficient. EfficientNet balances the trade-off between accuracy and

computational cost through architecture scaling.

Mobile Neural Networks: NAS has been applied to create lightweight neural networks that
are optimized for mobile and edge devices, such as MobileNetV3, where architecture search
played a key role in creating an efficient, accurate model suitable for resource-constrained

environments.

Challenges and Future Directions
While NAS has shown great promise, several challenges remain:

High Computational Cost: NAS can be computationally expensive, especially when
searching large spaces. Techniques like weight sharing (used in DARTS) are being explored

to reduce the search time by reusing weights across different architectures.

Transferability: NAS is typically designed for a specific task and dataset. A key challenge is
designing more general NAS methods that can transfer architectures across different tasks

and datasets.

Interpretability: As NAS automates architecture design, understanding why certain
architectures work better than others can be difficult. Increasing interpretability is crucial for

researchers to trust and adopt NAS-generated models.
Conclusion

Neural Architecture Search is revolutionizing the way deep learning models are designed by
automating the process of architecture selection. By reducing the need for manual
intervention and expert knowledge, NAS accelerates model development and often produces
architectures that outperform human-designed counterparts. As NAS continues to evolve, it
holds the potential to unlock new levels of performance and efficiency in a wide range of

applications, from mobile devices to large-scale industrial systems.

Volume 3 — 2025
Article No. 20, PP 1-5 https://techz.vcet.edu.in/ g

S\VCET TECHZETTE fadisdY Araus

ISSN: 2584-0886 (Online)

Volume 3 — 2025
Article No. 20, PP 1-5 https://techz.vcet.edu.in/ g

