SVCET TECHZETTE fadisdY sraus

ISSN: 2584-0886 (Online)
Exploring NoSQL Data Architectures for Big Data
Applications

Mokshad Sankhe

NoSQL databases have become a potent substitute for conventional relational databases as
businesses handle ever-increasing volumes of data. These systems are made to meet the
demands of Big Data, which include managing a variety of data kinds at high velocity and in
enormous numbers. The four primary NoSQL data architectures—graph databases, document
databases, column family stores, and key-value stores—will be discussed in this article. We
will also contrast the ways in which different systems tackle Big Data issues, particularly

those in which relational databases are inadequate.

Document Graph Key-Value Wide-column

?

WValue

ey 1 e

[far

Types of NoSQL Data Architectures:
. Key-Value Stores

The most basic type of NoSQL database is a key-value store, which is made to hold data in
pairs of distinct keys and the values that go with them. This design is frequently used in

caching systems and session management since it is optimized for quick lookups.

. Functionality: Key-value storage, like dictionaries, enable data retrieval through the
use of keys. They may not handle sophisticated querying patterns, yet they are very effective

for simple queries.
Examples:

. Redis:

Volume 3 — 2025
Article No. 9, PP 1-6 https://techz.vcet.edu.in/ g



T TECHZETTE fqdtsdt Arau

ISSN: 2584-0886 (Online)
Explorlng NoSQL Data Architectures for Big Data
Applications

. In-Memory Data Structure Store: Redis is a very fast read/write system since it runs

mostly in memory.

. Distributed Caching: Redis is a popular tool for data caching in distributed

applications because it can manage high traffic levels without causing
performance bottlenecks.
. Memcached:

. Memcached is a distributed memory object caching system that speeds up web

applications by minimizing database load.

. Web application acceleration: It quickens response times by keeping frequently

requested data in memory and speeding up apps.
. Graph Databases

Graph databases are best suited for handling and storing data from naturally related sources,
like supply chain networks, social networks, and recommendation systems. They use edges—

relationships—and nodes—entities—to store data.

. Functionality: Graph databases are particularly well-suited for applications like

pathfinding or data clustering that call for intricate querying of linked data and relationships.

Examples:
. Neo4j:
. Native Graph Data Model: Neo4;'s architecture is designed to handle large amounts of

densely connected data, making storage and retrieval effective.

. Highly Connected Data Modeling: It is perfect for recommendation engines, social

networks, and fraud detection since it is excellent at querying complex relationships.

. Apache TinkerPop:

Volume 3 — 2025
Article No. 9, PP 1-6 https://techz.vcet.edu.in/ g



T TECHZETTE fqdtsdt Arau

ISSN: 2584-0886 (Online)
Explorlng NoSQL Data Architectures for Big Data
Applications

. Graph Computing Framework: TinkerPop is an application development framework

that makes it easier for programmers to query graph databases while creating graph-based

apps.
. Polyglot Persistence: It provides versatility when working with many storage
backends by supporting a variety of graph databases via a single interface.

. Column family

Column family stores organize data into rows and columns, similar to relational databases but
with more flexibility. Each row in a column family store can have a variable number of

columns, making it efficient for handling sparse data and time-series data.

. Functionality: These databases provide flexibility in both reads and writes, making

them perfect for use cases where wide-column datasets are kept across several servers.

Examples:
. Apache Cassandra:
. Horizontal scalability is supported by Cassandra, a distributed wide-column store that

is well-known for its capacity to handle massive datasets across dispersed servers.

. High Availability and Fault Tolerance: Because it eliminates the possibility of a single

point of failure, it is a well-liked option for applications that need to be available always.
. HBase:

. Hadoop-Based Column Family Database: HBase is made to handle real-time Big Data
and is based on Hadoop's HDFS.

. Real-time analytics is a popular technology for applications that need to receive and

write large amounts of data quickly.
. Document Databases

Volume 3 — 2025
Article No. 9, PP 1-6 https://techz.vcet.edu.in/ g



T TECHZETTE fqdtsdt Arau

ISSN: 2584-0886 (Online)
Explorlng NoSQL Data Architectures for Big Data
Applications

Structured documents, typically in JSON or BSON format, are used by document databases
to store data. Because of this architecture's great flexibility, applications handling

unstructured or semi-structured data can benefit from schema-less design.

. Functionality: Unlike relational databases, documents do not require a preset schema
in order to store nested data structures. These are very helpful for data lakes and content

management systems.

Examples:
. MongoDB:
. Flexible Schema Design: Dynamic schemas are supported by MongoDB, enabling a

variety of structures for each document.

. Rich Query Features: It is appropriate for a range of applications since it provides

strong querying choices such full-text search, aggregation, and indexing.
. Apache CouchDB:

. RESTful HTTP API: CouchDB is a well-liked option for web applications since it
employs a RESTful API for database connectivity.

. Offline-First Applications: CouchDB offers data synchronization across devices,

making it a good fit for mobile and offline-first applications.
Solving Big Data Issues with NoSQL

Relational databases frequently suffer with scalability, high availability, and flexibility.
NoSQL databases, on the other hand, are designed to overcome the issues that arise while

processing Big Data.

. Massive Scalability

Volume 3 — 2025
Article No. 9, PP 1-6 https://techz.vcet.edu.in/ g



T TECHZETTE fqdtsdt Arau

ISSN: 2584-0886 (Online)
Explorlng NoSQL Data Architectures for Big Data
Applications

. NoSQL databases are excellent at horizontal scaling, distributing data among several

servers to handle increasing data volumes.

. Distributed Processing: By effectively allocating tasks across nodes, they guarantee

scalability without compromising performance.
. High Availability

. Fault Tolerance: NoSQL systems are designed to be resilient, which means that even

in the event of a node failure, the system will continue to function.

. Automatic Replication: In the event of a hardware failure, data is preserved through

replication among several nodes.

. Flexible Data Models

. Schema-Less design: NoSQL databases enable the storage of unstructured or semi-

structured data using a schema-less design.

. Heterogeneous Data Integration: By integrating different kinds of data, these systems

can support Big Data applications that depend on a variety of datasets.
Comparison of NoSQL Systems
. Performance

. Throughput: Real-time data streams and other high-throughput applications are
well-suited for NoSQL databases.

. Latency: NoSQL systems provide low-latency replies, even under high load, thanks to

in-memory solutions like Redis.

. Data Models

Volume 3 — 2025
Article No. 9, PP 1-6 https://techz.vcet.edu.in/ g



T TECHZETTE fqdtsdt Arau

ISSN: 2584-0886 (Online)
Explorlng NoSQL Data Architectures for Big Data
Applications

. Structure: A wide range of applications, from basic caching to intricate data modeling,
are made possible by the flexibility of NoSQL databases (key-value, graph, column family,

and document).

. Querying: The various NoSQL types offer a variety of querying capabilities, such as
graph traversal in Neo4j or MapReduce in HBase.

. Consistency and Availability

. CAP Theorem Tradeoffs: In distributed situations, NoSQL databases frequently forgo
rigorous consistency in favor of eventual consistency, giving availability and partition

tolerance top priority.

. Eventual Consistency: High availability is ensured by data that, while it may not be

instantly consistent across all nodes, will eventually converge.

Conclusion

Many of the difficulties that traditional relational databases face in handling Big Data
applications are resolved by NoSQL databases. NoSQL systems provide customized
solutions, ranging from the ease of use of key-value stores, to the connected data modeling of
graph databases, the scalability of column family stores, and the flexibility of document
databases. Businesses may choose which NoSQL system best suits their Big Data demands

by knowing the advantages and disadvantages of each architecture.

Volume 3 — 2025
Article No. 9, PP 1-6 https://techz.vcet.edu.in/ g



